Tuesday, March 29, 2011

Mechanical Engineering Professional Skills Activity Instructions Spring 2011

The following activity is designed to prompt expression of your knowledge of and ability to apply engineering professional skills. Its purpose is to determine how well your engineering program has taught you these skills. By participating, you are giving your consent to have your posts used for academic research purposes. When your posts are evaluated by the program assessment committee, your names will be removed.

To post a comment: 1)  click on the Sign In button in the upper right hand corner of the blog page, then sign in using your gmail account and password (If you don’t have a gmail account, sign up for one – it only takes a couple minutes); 2) scroll down to the bottom of the page and click on the word “comments,” which appears right below the list of sources.


Time line: You will have 2 weeks to complete the on-line discussion as a team. Use this blog to capture your thoughts, perspectives, ideas, and revisions as you work together on this problem. This activity is discussion-based, meaning you will participate through a collaborative exchange and critique of each other’s ideas and work. The goal is to challenge and support one another as a team to tap your collective resources and experiences to dig more deeply into the issue(s) raised in the scenario. Since the idea is that everyone in the discussion will refine his/her ideas through the discussion that develops, you should try to respond well before the activity ends so that the discussion has time to mature. It is important to make your initial posts and subsequent responses in a timely manner. You are expected to make multiple posts during each stage of this on-going discussion. The timeline below suggests how to pace your discussion. This is just a suggestion. Feel free to pace the discussion as you see fit.

Tuesday Week 1 Initial Posts: All participants post initial responses to these instructions (see below) and the scenario.
Thursday Week 1 Response Posts: Participants respond by tying together information and perspectives on important points and possible approaches. Participants identify gaps in information and seek to fill those gaps.
Tuesday Week 2 Refine Posts: Participants work toward agreement on what is most important, determine what they still need to find out, & evaluate one or more approaches from the previous week’s discussion.
Thursday Week 2 Polish Final Posts: Participants come to an agreement on what is most important, and propose one or more approaches to address the issue/s.

Discussion Instructions
Imagine that you are a team of engineers working together for a company or organization to address the issue raised in the scenario. Discuss what your team would need to take into consideration to begin to address the issue. You do not need to suggest specific technical solutions, but identify the most important factors and suggest one or more viable approaches.

Suggestions for discussion topics
• Identify the primary and secondary problems raised in the scenario.
• Who are the major stakeholders and what are their perspectives?
• What outside resources (people, literature/references, and technologies) could be engaged in developing viable approaches?
• Identify related contemporary issues.
• Brainstorm a number of feasible approaches to address the issue.
• Consider the following contexts: economic, environmental, cultural/societal, and global. What impacts would the approaches you brainstormed have on these contexts?
• Come to agreement on one or more viable approaches and state the rationale.

Lithium mining for lithium-ion electrical vehicle batteries
The US government is investing heavily in sustainable resource research and development in order to decrease national oil consumption, and automotive industries around the world are competing in a global race for “sustainable mobility”. There were about 52 million total vehicles produced in the world in 2009, and replacing a significant amount of them with highly electrified vehicles poses a major challenge. The state of California is targeting 1 million electric vehicles (EVs) on its streets by 2020. By that same date, Nissan forecasts that EVs will become 10% of all global sales.
Battery technology is currently the major bottleneck in EV design. In 2009, President Obama announced $2.4 billion in grants to accelerate the manufacturing and deployment of next generation batteries and EVs. Lithium-ion batteries are the first choice for the emerging EV generation, (the Chevy Volt, the Volvo C30, the Nissan Leaf), because they feature high power density, manageable operating temperatures, and are relatively easy to recharge on the grid.
In spite of its potential, lithium may not be the answer to the EV battery challenge. Lithium, which is recovered from lithium carbonate (Li2CO3), is not an unlimited resource. Lithium-based batteries are already used in almost all portable computers, cell phones and small appliances. Utility-scale lithium-based energy storage devices are in the works for smart grid applications, such as balancing energy supply-demand fluctuations. Lithium is also extensively used in a number of processes we take for granted: the manufacturing of glass, grits, greases and aluminum, among others. This makes accurate estimations of future demand in relation to resource availability almost impossible.

According to Meridian International Research, an independent renewable-energy think tank, there is insufficient recoverable lithium in the earth's crust to sustain electric vehicle manufacture based on Li-ion batteries in the volumes required by the mass market. Lithium depletion rates would exceed current oil depletion rates, potentially switching dependency from one diminishing resource to another. The United States Geological Survey reports that the Salar de Uyuni salt pans of Bolivia contain the largest untapped reserve of lithium in the world – an estimated 5.4 million metric tons or almost 50% of the global lithium reserve base. Other estimates put the Bolivian resource as high as 9 million metric tons. Bolivian president, Evo Morales, has consistently rejected bids by Mitsubishi and Toyota to mine lithium in his country and has announced plans to develop a state-controlled lithium mining operation. Prices of lithium carbonate (Li2CO3) have more than doubled since 2004. Lithium batteries are costly, too; battery packs for vehicles cost upwards of $20,000 alone, driving up the overall cost.
Lithium CAN be recycled, but there is little existing infrastructure. In 2009, a California company, Toxco Waste Management, received $9.5 million in grants from the US Department of Energy to help build the first US-based facility for recycling lithium batteries in anticipation of demand.

How much lithium is needed to power an electric vehicle?
Energy requirements………………………..16 kilowatt hours (specified for Chevy Volt)
Lithium estimates per kWh……………….0.431 kg (US Department of Transportation estimate)
Total lithium for one Chevy Volt……….6.86 kg
Total Li2CO3 for one Chevy Volt ......... 36.5 kg
Total Li2CO3 one million PHEVs ..........36,500 metric tons

Sources
Lithium Dreams: Can Bolivia Become the Saudi Arabia of the Electric-Car Era? (March 22, 2010). The New Yorker.
Lithium Largesse? (August 2009). American Ceramic Society Bulletin.
US Department of Energy, Press Release. (August 5, 2009)
Bolivia’s Lithium Mining Dilemma. (September 8, 2008) BBC News.
The Trouble with Lithium: Implications of Future PHEV Production for Lithium Demand. (2007). Meridian International Research.